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Abstract-This paper proposes a framework for optimized 
multipath routing in a wireless network with frequently changing 
topology.  The topology changes may be due to node mobility in 
mobile ad hoc networks, or limited node reliability and power 
supply in sensor networks.  The framework attempts to minimize 
losses (regrets) resulted from uncertainty in the network state at 
the point of making the routing decision.  This uncertainty results 
from delays in propagating rapidly changing network state 
information and high cost of network state updates in terms of 
the network resources.  The framework yields the optimal route 
mixture in the neighborhood of the “best” route.  This is 
consistent with observation [1] that while a desirable goal is to 
deliver data along the best available (primary) route, maintaining 
multiple routes through multipath may have beneficial effect on 
the network performance due to keeping track of the “best” 
route.  The proposed framework explicitly accounts for this effect 
by assuming that the routing affects the level of uncertainty.  
Resiliency of the routing under uncertainty may be achieved by 
assuming that the uncertainty is adversarial, given the available 
information on the network state.  This framework naturally 
allows for the game theoretic interpretation with routing 
algorithm making a feasible routing decision and adversarial 
environment selecting a feasible, i.e., consistent with available 
information, network state.  The optimal route mixture is 
identified with (generally mixed) Nash routing strategy in the 
corresponding game.  Future efforts should be directed towards 
solving the corresponding games. 
 
 

I.   INTRODUCTION  

Optimization of a routing algorithm in a wireless network is a 
challenging problem due to limitation on the available information on 
the network state at the point of making the routing decision.  This 
uncertainty is a result of variations in the channel and load conditions 
on the one hand, and high cost of updating the network state 
information in terms of the network resources on the other hand.  
Channel conditions may change due to mobility in a mobile network, 
or limited node reliability and power supply in a sensor network.  In 
the extreme case when no network state information is available, 
flooding or gossiping with completely random selection of the next 
hop (hops) is the only option [2]-[4].  However, downside of this 
approach is inefficient use of the resources (bandwidth and 
transmission power) in a case of flooding, or large delays in a case of 
a completely random gossiping.  In another extreme case when 
complete information on the network state is available, shortest or 
minimum cost link state routing algorithm with appropriately defined 
link lengths (costs) results in a single optimal route [5].  In most 
practical situations, however, some limited information is available at 
the point of making the routing decision, and the challenge is finding 

a proper way to utilize this information to improve the network 
performance/resilience.   
    It is natural to expect that under this intermediate scenario the 
optimal routing algorithm uses multiple paths that concentrate in 
some neighborhood of the “optimal” route and this neighborhood 
grows as uncertainty in the network connectivity increases.  
Beneficial effects of splitting traffic among multiple feasible 
routes on network performance and resiliency have been 
known for quite some time.  Dispersity Routing [6] improves 
network ability to transmit large files by combining resources 
of several routes.  Recent results [7] demonstrated that traffic 
splitting may increase capacity of a mobile wireless network, 
however, at the cost of possibly very large delays.  Numerous 
papers investigated resilience of the routing algorithm 
achieved by sending multiple copies of a packet over different 
routes.  For applications to a wireless network see, for 
example, [8].  Most relevant for our purposes is observation 
[1] that while a desirable goal is to deliver data along the best 
available (primary) route, maintaining multiple routes through 
multipath routing may be beneficial for the network 
performance due to keeping track of the “best” route.  The 
challenge, thus, is how to identify the optimal route mixture 
and, more generally, the optimal traffic split.  The first 
problem has been empirically addressed in [1]. 
    This paper proposes an analytical framework for route 
selection intended to balance performance and route 
maintenance capabilities of multipath routing.  Resiliency of 
the routing under uncertainty is achieved by assuming that the 
uncertainty is adversarial, given the available information on 
the network state.  This framework naturally allows for the 
game theoretic interpretation with routing algorithm making a 
feasible routing decision and adversarial environment selecting 
a feasible, i.e., consistent with available information, network 
state.  The optimal traffic split is identified with (generally 
mixed) Nash routing strategy in the corresponding game.  This 
optimal solution routes most of the traffic on the “optimal” 
path, but also sends some small portion of the traffic on non-
optimal routes in some neighborhood of the “best” route for 
the purposes of route exploration and maintenance.  Note that 
despite we assume source routing, the proposed framework 
can be also applied to optimization of a hop by hop routing. 
    We assume that the “best” route has minimum cost among 
all feasible routes where the link costs are some functions of 
possibly uncertain network state.  We model uncertainty in the 
network state, directly, in terms of uncertain link costs, so that 
the “best” route may not be known to the source at the moment 



of making the routing decision.  Usually, this formulation of 
uncertainty does not present any problem.  For, example, in a 
wireless context networks are often modeled by a random graph with 
fixed set of nodes N  where nodes Ni ∈  and iNj \∈  are 
directly connected by a link ),( jil =  with some probability 

lp  and not directly connected with probability ll pq −= 1  
[8].  Direct connectivity for different pairs of nodes are jointly 
statistically independent.  Under these assumptions the 
probability that route r  exists is the product of the probabilities 
of existence of all the links on this route: 
                                       ∏

∈

=
rl

lr pp                                   (1) 

The problem of finding the most reliable path within the set of 
feasible routes for a given origin-destination R  is formulated as 
follows: 
                                  rRr

opt pr
∈

= maxarg                             (2) 

and can be interpreted as finding the shortest (minimum cost) 
path 
                                ∑
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=

rl
lRr

opt wr minarg                          (3) 

with respect to  the link weights (costs or lengths) 
                                   ll pw log−=                                     (4) 
Except for the case of equal cost multipath, minimum cost 
routing (3) results in a single optimal route.  In a case of equal 
minimum cost multipath, routing (3) does not identify the 
optimal traffic split among minimum cost feasible routes. 
    Depending on the specific problem, the link cost may also 
represent power, or QoS required for transmission on the link, 
or combination of both.  In practice, since link weights are not 
known precisely, they are replaced with point estimates ll ww ~≈ , 
and the optimal route is determined based on these estimates: 
                          ∑

∈∈
=

rl
rFr

opt wr ~minarg~ .                             (5) 

In a particular case of finding the most reliable path (2) 

ll pw ~log~ −= , where the point estimate for the probability of 

link l  connectivity is lp~ .  The result of this procedure is again a 
single “optimal” path, usually, very sensitive to point estimates for the 
link weights.   
    However, despite the link weights lw  may be constant 

during a packet transmission, the numerical values of lw  
usually are not known precisely.  In a case of pro-active routing 
the rate of change in the link path losses due to mobility may become 
comparable with rate of updates in the routing information.  In a case 
of on-demand routing short exploratory packets relay almost 
instantaneous information on the link path losses, but due to the fast 
fading and limited number of “observations”, the link conditions 
faced by the consequent payload transmissions are likely to be 
different.  Situation becomes even worse for delay sensitive 
applications, which are likely to require connection oriented services.  
Setting up a connection for sending a stream of packets increases 

uncertainty in the propagation conditions faced by packets as duration 
of the connection increases.  
    The paper is organized as follows.  Section II discusses models of 
uncertainty in the link costs.  Section III describes game theoretic 
framework for optimized multipath routing.  Section IV solves the 
corresponding game in a case of two feasible routes and discusses 
some implications of route stability on the routing decisions.  Finally, 
conclusion briefly summarizes results and outlines directions of future 
research.  
 

II.  UNCERTAIN LINK COSTS  

We assume that information on a link l  weight lw  available to a 
source s  can be quantified in terms of the set of probability 
distributions 
                   ),Pr(),( llllll wwwq θλθλ ≤=                   (6) 

where the rate of source s  transmission over link l  is lλ .  In 
practice, distribution (6) is determined from observations.   We 
assume that the form of the distribution ),( lll wq θλ  is 

known.  Vector ll Θ∈θ  characterizes parameters of this 
distribution, usually the distribution moments, to be estimated 
from the measurements.  Fixed set lΘ  represents the 

“confidence” region for the vector lθ .  For simplicity we 
assume that weights of different links are jointly statistically 
independent: 
                             ∏=

l
llll wqQ ),( θλ                             (7) 

    Modeling uncertainty in the link weights by assuming that 
link weights are random variables with some known 
probability distributions has been proposed in [9].  This 
framework results in the single “best” route that has the 
minimum average cost.  Since in practice the distributions and 
average link costs are the result of statistical inferences based 
on historical data, papers [10]-[11] have proposed to explicitly 
incorporate uncertainty in these distributions by introducing 
parameters ll Θ∈θ .  This paper takes the model of 
uncertainty in the link costs a step further by assuming that 
distribution (6) depends on the transmission rate lλ .  Due to 
limited space we do not describe formal properties of the 
distribution (6) as a function of lλ  in a general case.  Note 

only, that it is natural to assume that increase in lλ  reduces 
uncertainty in the distribution (6).   
    In the rest of this section we illustrate our model for a  
particular case of “hard” constraints on the link weights 
                                   ],[ lll www )(∈                                     (8) 
It is natural to assume that given point estimate for the link weight 

lw~ , the low boundary )(λll ww (( =  is a non-decreasing, and 

the upper boundary )(λll ww )) =  is a non-increasing function 

of the rate λ , and  
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It is easy to see that model of uncertain link weights (8) fits into 
general model (6).   The “width” of the confidence intervals (8)  
                            lll ww () −=δ                                           (10) 
represents uncertainty in the available information on the 
current network state, and is related to the “confidence” in the 
reliability of this information.  In a particular case of finding the 
most reliable path (2)-(3) the bounds in (8) are   
             ll pw (( log−= , ll pw )) log−= ,                           (11) 

where the available information on the link connectivity lp  is 
quantified in terms of the confidence interval 
                            ],[ lll ppp )(∈                                          (12) 
    Model (8) allows for various interpretations.  One 
interpretation could be setting up a path for a flow in a 
connection-oriented mode for a streaming, e.g., video 
application.  Assuming that the link weights )(tww ll =  at 
the moment t  of making the routing decision are known, the 
point projection for the link weights )( τ+= tww ll  to the 

lifetime of the connection (flow) ],[ τ+tt  is 

)(~~ τ+= tww ll .   The low and upper boundaries of the 
confidence interval for the link weight projection are 

)( τ+= tww ll
((

 and )( τ+= tww ll
))

 respectively.  This 
situation is illustrated in Figure 1. 
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Figure 1.  Uncertainty as a function of time horizon τ . 
 
If uncertainty (8) is a result of finite frequency of updates of 
the network state information and delays in disseminating this 
information, then the confidence interval (8) widens with time 
τ  elapsed from the last update.  Briefly illustrate this point on 
an example of mobile ad hoc network where mobile m  has 
maximum speed max

mv , and the routing attempts to minimize 
the transmission power.  On a flat surface the power needed to 
transmit on a link ),( jil =  is a function of the physical 

length of this link: ),( llll dfw λ= .  Assuming that the 

maximum speed of mobile m  is max
mv , the uncertainty in the 

link ),( jil =  physical length is 

                                 ],[ lll ddd
)(

∈                                      (13) 
where 
                 })(~,,0max{ maxmax τjill vvdd +−=

(
, 

                          τ)(~ maxmax
jill vvdd ++=

)
, 

the last observed length of the link l  is ld~ , and time elapsed 
from this last update is τ .  Figure 2 illustrates uncertainty 
(13). 
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Figure 2.  Uncertainty in the distance between nodes i  and j .  
 
This uncertainty in the physical link lengths translates into 
uncertainty in the link costs (8), where ),( llll dfw

(( λ= ,  

),( llll dfw
)) λ= .  Figure 3 illustrates difficulty of 

determining the best route from node 1 to node 2 in a case of 
four-node mobile network with uncertain node locations due to 
the mobility.  
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            Figure 3.  Which route is better 12r , 132r , or 142r ? 

 
Circles in the figure 3 represent possible locations of the 
corresponding nodes.  There are three possible routes: direct 
route 2112 →=r , and two two-hop routes 

)231(132 →→=r  and )241(142 →→=r .  It is easy 



to see that the best route may be very sensitive to uncertain 
node locations.  Conventional approach assumes some fixed 
probability distribution for the node locations, and bases the 
routing decision on the corresponding average route costs.  
However, this approach does not resolve the sensitivity 
problem since the average route costs and the resulting best 
route remain very sensitive to selection of the corresponding 
distributions.  Also, this essentially Bayesian approach results 
in the single “best” route, and thus does not characterize the 
beneficial route maintenance effect of multipath routing.  A 
simple model for describing this effect can be obtained by 
assuming that time elapsed from this update is  

                            
ll

ll µλ
ϑτ

+
+= 1

                                 (14) 

where the frequency of updating information on the link l  due 
to pro-active nature of the routing protocol is lµ , packet data 

rate through link l  is link lλ , and the delay in receiving this 

information at the source is lϑ .  Despite formula (14) may be 
oversimplification for quantitative conclusions, qualitatively it 
captures the “uncertainty reducing property” of the multipath 
routing.  It is easy to see that an attempt to combine this 
property with Bayesian routing decision results in unstable 
routing. 
 

III. OPTIMIZED MULTIPATH ROUTING    

The average cost of a link l  with respect to distribution (6) is a 
function of the parameter lθ  and data packet rate through this 

link lλ : 

                     ][),( lqll
ave
l wEw =λθ                                 (15) 

The average cost of a route is a function of vectors 
):( rllr ∈= θθ  and ):( rllr ∈= λλ : 

                  ∑
∈

=
rl

ll
ave
lrr

ave
r ww ),(),( λθλθ                     (16) 

and thus the optimal, with respect to the average cost, route 

                ∑
∈∈

=
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depends on vectors ):( Frll ⊆∈= θθ  and 

):( Frll ⊆∈= λλ . 

    If traffic generated by a source s  to some given destination 
is split among feasible routes F , then the transmission rate 
over link l  from source s  is 
                                ∑

∈

=
rlr

rsl
:

γλλ                                     (18) 

where the total traffic generated by source s  is sλ , the 

portion of this traffic carried on route Fr ∈  is rγ , and 

                          1=∑
∈Fr

rγ , 0≥rγ                                   (19) 

The average expected route cost resulted from traffic split 
)( rγγ =  is 

                 ∑
∈

=
Fr

rr
ave
rr

ave ww )](,[),( γλθγγθ               (20) 

where ):)(()( rllr ∈= γλγλ , and )(γλl  is given by ( ). 

 It is natural to define the optimal traffic split )( rγγ =  by 
minimizing the expected route cost (20): 

                         ),(minarg)(* γθθγ
γ

avew=                   (21)            

Given Θ∈θ , the optimal routing (21) splits traffic among 
routes with minimum cost (equal cost multipath) [5].  The 
problem is that the optimal split (21) depends on the unknown 
vector Θ∈θ , and optimization problem (21) is typically ill-
posed.  Conventional approach to solving ill-conditioned 
problems is regularization by imposing additional conditions 
on the solution [11]-[12].  Additional condition of robustness 
with respect to unknown vector Θ∈θ  leads to the following 
game theoretic framework for optimized multipath routing. 
 Consider a game of the routing algorithm selecting traffic 
split )( rγγ =  in an attempt to minimize the route cost (20) 
and the adversarial uncertainty selecting vector Θ∈θ  in an 
attempt to obstruct these efforts.  It is natural to define 
adversarial intent as an attempt to maximize the expected 
regret (loss) 

                       ∑
∈

=
Fr

ave
r rwLL ),(),( γγθ                       (22) 

where the regret (loss) function is [13] 

                        ave
rFr

ave
r wwrwL ′∈′

−= min),(                       (23) 

and vector )( ave
r

ave ww =  is given by (15)-(16).  It can be 
shown that under certain weak assumptions the optimal 
solution to this game can be obtained by solving the following 
optimization problem 
                  ),(maxmin),( ** γθγθ

θγ
LL =                      (24) 

subject to the corresponding constraints.  Optimization 
problem (24) can be solved by fixed point equations as 
follows. 
    Fix the traffic split is )( rγγ = , and consider a zero sum 
game G  of the routing algorithm choosing feasible route 

Fr ∈  in an attempt to minimize loss (23) and adversarial 
uncertainty choosing Θ∈θ  in an attempt to maximize loss 
(23).  Let (generally mixed) Nash routing solution to this game 
select feasible route Fr ∈  with probability rα .  Vector 

)( rαα =  is a function of fixed vector )( rγγ = : 
)(γϕα = .  Consider fixed point equations 



                                   )(γϕγ =                                          (25) 
It is easy to see that solution to the optimization problem (24) 
also solves fixed point equations (25).  Due to limited space 
we do not consider stability of (25).   
    We conclude this section with the following remarks.  First, 
game G  can be reduced to a finite game by eliminating 
dominated strategies for the adversarial environment [14], 
[11].  Second, the optimal route mixture α  only includes 
routes of minimum cost (equal cost multipath), and thus is 
equivalent to the route optimality principle in load balancing 
[15].  This relation between guarding against adversarial 
uncertainty and load balancing deserves further investigation.  
Finally, randomized routing α  has interesting interpretation 
as the shortest random walk in adversarial environment [15]. 
 

IV. EXAMPLE: A CASE OF TWO FEASIBLE ROUTES  
In this section we illustrate the proposed framework on an 
example of two feasible routes 1r  and 2r  assuming hard 
constraints on the link weights (8).  Since we need to consider 
only non-overlapping links of the routes 1r  and 2r  introduce 
corresponding lower and upper bounds for the weights of non-
overlapping parts of routes ir , 2,1=i : 
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where I 2112 rrr = .  It is easy to see that if intervals 

],[ 11 ww )(
 and ],[ 22 ww )(

 do not overlap with each other: 
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the game has solution in pure strategies, and the optimal route 
is 
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If intervals ],[ 11 ww )(
 and ],[ 22 ww )(

 do overlap with each 
other: 
                     ∅≠I

)()( ],[],[ 2211 wwww ,                           (30) 
the game has solution in mixed strategies.  It can be shown that 
all feasible strategies for the adversarial environment are 
dominated by the following two strategies: 
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The payoff matrix in the corresponding 22×  game is 
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The optimal routing strategy is to select route 1r  with 
probability 
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and select route 2r  with probability 12 1 αα −= , where 
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and 
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Note that in general, equal traffic split is not optimal.  The 
optimal strategy for the adversarial environment is to select 
strategy 1ss =  with probability 21 αβ = , and to select 

strategy 2ss =  with probability 12 αβ = , where iα , 

2,1=i  are given by (32).  It is easy to verify that for this 

optimal mixed strategy, routes 1r  and 2r  have the same 

average weights: *
2

*
1 ww = , and thus the optimality principle 

of splitting traffic only among minimum cost routes is 
preserved. 
    To demonstrate the role of route stability on the optimal 
routing decision, consider selection of the most reliable route 
under uncertain connectivity (3), (11)-(12).  In this case 
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where “confidence region for the corresponding connectivity 
probability ip  is iii ppp )( ≤≤ , and the point estimate for 

ip  is  2)(~
iii ppp () += .  It is easy to see that increase in 

the route ir  instability reduces the optimal portion of traffic 

iα  allocated to this route.  In particular, the traffic should be 

split equally between routes 1r  and 2r , i.e., 21 αα =  if 

                               2211 pppp )()( =                                       (37) 

A case of extremely unstable route 1r  with 

}1~2,0max{ 11 −= pp( , }~2,1min{ 11 pp =)
, and 

completely stable route 2r  with 222
~ppp == )(

 is shown in 
Figure 4.  In the region OABFO the entire load should be 
carried on the route 2r .  In the region FCDF the entire load 

should be carried on the route 1r .  In the region FBCF traffic 

should be split between routes 1r  and 2r , i.e., 0, 21 >αα .   
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Figure 4.  Optimal traffic split between completely unstable route 1r  

and completely stable route 2r . 
 
The traffic should be split equally between routes 1r  and 2r , 

i.e., 21 αα =  on the curve OFGC described by equation  
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where 0>ε  is some arbitrarily small constant. 
    Finally, briefly demonstrate the interplay between route cost 
miinimization and reduction in uncertainty.  Assuming that 
acknowledgments of the successful packet delivery is the only 
source of information on the network state, model (14) yields 
                                  iii αχδ =                                       (39) 

where iχ  are some parameters describing level of uncertainty 

for route ir .  Combing (39) with (32) we obtain fixed point 

equation for the optimal traffic split ),( 21 ααα = .  Due to 
limited space we only note that in a case of small uncertainties 

0→iδ , the most of the traffic should be carried on the route 

with minimum expected cost iw~ , 2,1=i .  In a case of 
“large” uncertainty for both routes, traffic should be split 
equally between routes: 2121 == αα . 
 

V.   CONCLUSION  

This paper has proposed a framework for optimized multipath 
routing in a network with frequently changing topology.  The 
framework attempts to find the optimal operating points 
balancing performance and route discovery capabilities of 
multipath routing.  Future efforts should be directed towards 
developing approximate solutions for the corresponding games 
under various scenarios for the adversarial environment. (For 
some partial results see [12], [15]-[16].)  A Bayesian game 
model, allowing the routing algorithm to adapt to the uncertain 

environment, appears to be a natural extension of the proposed 
framework.  However, success of such extension will depend 
on overcoming computational difficulties of solving the 
corresponding Bayesian games. 
    High dimension, inherent uncertainties, and limited 
resources in wireless network suggest broader view of 
selecting routes as a cognitive process of adaptation and 
competition.  Randomization of the routing decisions can be 
viewed as mutations intended to adapt to changing conditions 
influencing the route costs.  As a result of interference, 
different sources share, and thus compete for the same 
resources, e.g., transmission power and bandwidth.  This 
process appears to be similar to adaptation and competition in 
natural selection.  Exploring analogies between routing and 
evolutionary algorithms may lead to highly adaptive, efficient 
and resilient network management schemes.     
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